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As a first step in investigating the consequences of making the fixed-surface assump- 
tion in ocean circulation models, a numerical model for free-surface barotropic flow 
in a basin on a beta-plane is proposed. Two numerical solutions are presented. The first 
solution was obtained using a standard linear eddy viscosity (K = IV cm*/sec) and it 
agrees with Gates’ solution. The second solution was obtained using a nonlinear eddy 
viscosity due to Leith and based on two-dimensional turbulence arguments. The two 
solutions differ in that the nonlinear eddy viscosity permits an intensification of interior 
flows and a transient modification of the western boundary current. 

I. INTRODUCTION 

In modelling ocean circulations it is frequently assumed that external gravity 
waves influence the circulations only slightly; their exclusion from a model is thus 
thought to contribute only a small error to solutions obtained with the model. 
This assumption will be examined in this and in a second report wherein we will 
obtain and compare barotropic solutions from the primitive equations (the free- 
surface case) with barotropic solutions from the filtered equations (the fixed- 
surface case). The equations of motion are nonlinear, and the solutions will be 
obtained by numerical methods, but the conclusions reached will be pertinent to 
analytic studies as well. In the second report we will deal with a numerical model 
for the fixed-surface case and with a comparison of expected solutions (from linear 
theory) with realized solutions. In this report the numerical method used to obtain 
solutions for the free-surface case will be described. In addition, two numerical 
solutions obtained from two variants of the free-surface model will be presented 
here. The models differ in that the first one includes a linear eddy viscosity (K = 
lo8 cm2/sec-l) while the second uses instead, a nonlinear eddy viscosity. 

In seeking solutions to the partial differential equations governing large scale 
hydrodynamic phenomena such as the circulations of the oceans, one can take three 
points of view with regard to the temporal aspects of the problem. One can eliminate 
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time from the equations by fiat and seek steady solutions. Alternately, one can 
find steady solutions by keeping time as an independent variable and averaging 
the solution over say the longest period germane to the problem [I]. The third 
choice is to seek time dependent solutions explicitly [2]. In analytic approaches to 
ocean circulation problems, the first choice is usually made except in the simplest 
of cases [3]. However, if one seeks numerical solutions, it is sometimes easier to 
solve the time dependent equations rather than the steady equations and so the 
second choice is often made. In obtaining these steady numerical solutions one is 
usually forced to integrate the equations of motion for relatively long periods of 
time and the problem of choosing a numerically stable but reasonably efficient time 
step becomes an important consideration. EfFiciency is of course a desirable trait 
in short term problems also, but it is a much more serious consideration for the 
long term integrations. 

For difference equations based on hyperbolic differential equations, the Courant- 
Freidrichs-Lewy stability condition [4] requires essentially that the time step be 
chosen so that any combination of signals can traverse at most one zone per time 
step. The largest possible time step may thus be obtained by (1) determining which 
phenomena are relevant to the problem at hand, and (2) removing from the solu- 
tion any other phenomenon if it acts to decrease the time step. Filtering out these 
unwanted features is usually accomplished by modifying the equations of motion 
in some way [5] but this must be done carefully; even though the filtered equations 
may permit a larger time step to be used, they may also take longer to compute 
and may even result in a less efficient calculation. 

For ocean circulation calculations we start with the primitive equations and note 
that there are several characteristic speeds that may occur in solutions. We have 
sound waves (5400 km/h), external gravity waves (800 km/h), internal gravity 
waves (4 km/h), Rossby waves (25 km/h), and currents (3 km/h). We will be con- 
cerned here with simple barotropic models, and will eliminate sound waves by 
assuming the flow to be incompressible, and internal gravity waves by working 
with vertically-integrated equations of motion. The elimination of sound waves and 
internal gravity waves results in a free-surface barotropic model. If external gravity 
waves are eliminated from the free-surface model by imposing a condition of zero 
vertical velocity at the top and bottom of the fluid, we have a fixed-surface model. 
In addition to advective and diffusive processes, fixed-surface barotropic models 
permit only Rossby waves to exist while free-surface barotropic models include 
external (surface) gravity waves as well. We expect then that the free-surface 
solution will be more accurate than the fixed-surface solution in that it will more 
closely approximate nature. It may be, however, that the barotropic solution 
depends primarily on Rossby waves and is only weakly influenced by the presence 
of gravity waves. If this is so, the fixed-surface model will generate a reasonable 
approximation to the barotropic solution, and we will profit by having a less 
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complex set of equations to solve and by being able to increase the integration 
time step by more than an order of magnitude. 

The purpose of this series of reports then is to investigate the consequences of 
using the fixed-surface approximation in place of the free-surface approximation 
to obtain barotropic solutions. 

In Sections II and III, the equations of motion and boundary conditions for 
free-surface flow are stated. The finite difference equations are contained in Section 
IV, and a stability analysis follows in Section V. A comparative discussion of two 
numerical solutions is presented in Section VI and a summary of this investigation 
is given in Section VII. Comments on the need for, and the formulation of the 
nonlinear eddy viscosity used here are contained in an appendix. 

II. EQUATIONS OF MOTION 

For viscous flow on a rotating sphere, the equations for the horizontal 
components of velocity are [6] 

where f = 2Q sin 8 is the Coriolis parameter; (F5, Fv) is the dissipation term; 
V is the horizontal velocity vector having an eastward component u and a north. 
ward component a; p is the pressure, p is the density, and w is the vertical 
component of velocity. In anticipation of the &plane approximation the metric 

dx = aces 8dh 

dy = a d6’ 

where a, 8, and h are the earth’s radius, the latitude, and longitude, respectively, 
has been introduced. For the sake of simplicity, we will eventually eliminate the 
convergence of coordinate lines by choosing a constant value for cos 0 in this 
metric. 

If in addition we assert that the fluid is incompressible 

v.v+g=o 
and homogeneous, in hydrostatic equilibrium 

P(Z) = PO + P& - 49 W-4) 

we have a system of four equations in the four unknowns U, u, W, and p. A left- 
handed coordinate system in which z increases “downward” is employed (Fig. 1). 
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FIG. 1. Coordinate system in which x increases eastward and y increases northward. 

The equilibrium depth D and the total local depth H = D - h are much less than 
the minimum wavelength of horizontal motions permitted by the finite difference 
mesh (see Section III) and we thus have shallow waves with a characteristic 
gravity wave speed of z/so. The variations of surface height h about the 
equilibrium depth are such that negative values of h correspond to wave crests. 

To simplify matters somewhat, and to make the solutions more amenable 
to analysis, the &plane approximation is made-i.e., we assume f = f. + /IJJ 
when f. and j3 are constants. 

We are interested primarily in the exterior flows here, and choose to eliminate 
the vertical structure by the use of integrals. Following Gates [2], we let an overbar 
indicate the following integral, 

ii(t, x, y) = $ jr u(t, x, y, z) dz 

where u stands for any of the dependent variables. Differentiation of (II-5) gives, 
for D = D(x, y) and h = h(t, x, y), for example 

5l au UD - i aD Uh - u ah --___- 
Z= ax H ax 

+ 
-F-ax 

(U-6) 

If we then apply the integral from Eq. (11-5) to Eqs. (II-I), (H-2) and (II-3) we 
have, after some manipulation 

=gH~+fN+V~Gl4+rr,-7,2, (11-7) 

ah 
~H--~M+V-KVN+T&--;, 

ay 
(II-S) 

and 
ah aA aN () 
-----= 5 at 2~ ay 

(H-9) 
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where we have now dropped the overbars, let M = Hu, N = Hv, and have made 
closure assumptions; for the nonlinear terms, 

Hs= Hziti and HuL’= HG 

and for the dissipative terms 

KHV% = v - KVM and KHP~v = v - KVN, 

where K is the horizontal eddy diffusion coefficient. In addition we have assumed 
that the horizontal components of bottom and surface stresses are given by 

where K, is the vertical eddy diffusion coefficient. 
For the problems of concern here, we will take the bottom drag as well as the 

north-south surface stress to be zero, 

p = -p - 
h D- T”D = 0 (U-10) 

and the east-west surface stress to be a simple function of y alone (Section IIt). 

III. THE BASIN, BOUNDARY CONDITION, AND WIND STRESS 

The model is set up for rectangular basins L units wide and Y units high, but 
to contrast with Bryan [l], Fischer [7], and Gates [2] the special case considered 
here is that of a square basin, L = Y = 4440 km. The basin is subdivided into 
26 zones in each direction so that mesh points are separated by approximately 
170 km; the smallest wavelength permitted is thus 340 km. 

Boundary conditions are somewhat a matter of personal choice-those taken 
here, for velocity, correspond to no-normal transport, free-slip conditions at the 
northern and southern boundaries and the no-slip condition at eastern and western 
boundaries. This then permits a viscous boundary layer to exist only along the 
“coastal” edges, and we have 

W, 0, Y) = W, L, Y) = NO, 0, Y) = N(t, L, y) = 0 

aM 
1 

aM 
ayy--o=ayy=y 1 

= N(t, x, 0) = N(r, x, Y) = 0. 
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The application of these boundary conditions to Eq. (11-8) results in a subsidiary 
condition along the eastern and western boundaries, 

(M-1) 

To conserve volume, the surface height anomaly h is permitted to change in 
time along the boundaries, but discussion of this will be deferred to Section IV. 

As noted in Section II all components of the surface stress and bottom drag are 
zero except for the east-west surface-stress term, and it is taken to be 

r; = KD cos n-y/Y, (111-2) 

where KD is 0.004 km2 h-2. The curl of the wind stress is thus zero only at the nor- 
thern and southern boundaries, and a separation of the “gulf stream” [8] is not 
anticipated. 

The Coriolis parameter is linearized in accordance with the p-plane approxima- 
tion 

f = h + FYBY, (M-3) 

where f0 = 0.18 h-l and /? = 0.63 x 1O-4 km-l h-l. The basin thus starts at a 
latitude of 20” and extends to 60”. The choice of /3 corresponds to a latitude of 
40”. 

IV. DIFFERENCE EQUATIONS 

In this section, we shall set down the difference approximations to Eqs. (H-7), 
(I&8), and (K-9) and the boundary conditions on h deferred from Section III. 

The dependent variables are taken to be staggered in both space and time; 
forward time differences and stabilized, centered space differences are used. If 
n, k, and 1 are indices associated with the indepedent variables t, x, and y, we have 
/r(tn , xk , yr) = h(n At, k Ax, 1 Ay) = h;,, and Mkn_;lr--1,2 and J~‘k”r:/,“,r-r,~. The 
south-west corner of the mesh is shown in Fig. 2A to illustrate the spatial relation 
of the dependent variables. A section of the (x, t) projection of the space-time mesh 
is shown in Fig. 2B. 

Theconservative natureof thediffgrential equations is carried over into theformu- 
lation of the difference equations. That is, rather than thinking of hk,l as a point-wise 
quantity, it is considered to be a mean value over some local spatial region, namely 
the rectangle between the vertical lines xkP1/2 and &+1/2 and the horizontal lines 
yt-112 and yz+l12. In Fig. 2A then h is associated with the zone enclosed by broken 
lines while M and N are associated with zones enclosed by solid lines. 
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FIG. 2. (A) Southwest comer of the mesh showing the spatial relation of the variables M, N, 
and h. (B) A projection of the (x, y, t) space onto the (x, I) plane showing the space-time relation 
of the variables M, N, and h. 

To illustrate the conservative aspects of the equations of motion more fully, 
Eqs. (11-7) and (11-8) are rewritten 

aA!f aFh4 
at=-ax- 

F+gH$+fN--7,2 

and 

where the operators F and G are 

and 

a 
F=u-KZ 

G=t’--K$. 

581/5/r-10 

(IV-l) 

(IV-2) 
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The fluxes FM, GM, FN, and GN thus account for the advection and diffusion of 
momentum, and if these quantities can be computed along the solid lines (Fig. 2A) 
we are well on the way to determining the tendencies of M and N. 

We take the momentum fluxes to be 

- (&m + @W4~+1,2.1--1,~ - MI+,,,J-l/J (TV-3) 

and 

- (y;-l,2,t + 2~)(M,-,,,,~+l,, - Mk-,/2.t-d (IV-4) 

where a = u At/Ax, /3 = tc At/Ax2, y = v AtlAy, and 6 = K At/Ay2. 
The advective part of these fluxes (the remainder with K = 0) is derived and 

analyzed elsewhere [9]. It is sufficient to note here that in the one-dimensional 
case, the condition for stability is 

(u At/Ax)2 + 2(K At/Ax2) < 1 

when forward time differences are used, and when only advection and diffusion 
are accounted for. 

The algorithm for advancing quantities in time is based on the Marchuk [lo] 
time-splitting method, and we have 

M* = M”+2 - $ [FMn-1’2)k,1--1,2 - FM”-1’2)k-l,1-l,2 - mL,,,w21~ 
(IV-Sa) 

N* = Nn-1/2 - $ [FN”-l/2)k,1-l,2 - FN”-1’2)k-1,u/21, 

At 
M** = M* - dy [GM*)k-I,2,1 - GM*),-,,,,t-11 + At-+-m.w2 9 

(IV-5b) 

(IV-6a) 

N** At 
= N* - dy [GN*)k-,,u - GN*L/m - 354%1,2+1,21, 

Mn+l/2 = M** + f At Nn+W, (IV-7a) 

and 
Nr+l/2 = N** _ f At Mn+l12, (IV-7b) 
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where a subscript (k - l/2, I - l/2) is understood for all M and N, and the 
operators K and L are given by 

and 

Kb-W-~/P = fj [40 - h k.Z - hk,l-I - hk-l,t - hk-l.l--ll 

x [hk.l + hk,,-1 - hk--l,l - hk-,,l-,l 

Lh)k-l/2,1-112 = i [40 - hk.l - hk,l-1 - hk-1.l - hk-l.l--ll 

x [hk,Z + hk-,,Z - hk.6-l - hk-lJ-d 

Equations (W-5) are solved for M* and N* at all mesh points. Then Eqs. (IV-6) 
are solved for A4** and N** at all mesh points. Finally IRP+~/~ and Nn+ri2 are 
computed at all mesh points from equations resulting from Eqs. (IV-7). 

It is emphasized that the fluxes computed from Eqs. (IV-3) and (W-4) are based 
on intermediate (perhaps starred) values of M and N, but on values of u and u only 
at time (n - l/2) dt. 

The surface height anomaly is then advanced in time, 

by solving Eq. (IV-8) at all interior mesh points. At boundary points, special 
precautions must be taken to insure that volume and momentum are conserved, 
and these are dealt with in the remainder of this section. 

All boundary calculations involve use of the method of images whereby image 
points outside the mesh are introduced and functional values are determined at 
these points through the boundary conditions and the equations of motion. This 
technique considerably simplifies some of the programming aspects of the problem. 

At the northern boundary, we have a slip, no-transport boundary condition; 

Nzw2.a = 0 
and 

!?!! =() 
1 aY k--112$? 

for 1 < k < K. These conditions are satisfied to second order if images at 9 + l/2 
are given by 

Nk-mzw2 = -Nk-m.sw2 
and 

Mk-mzw2 = Mk-ms+m . 
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Along the eastern boundary we have a no-slip boundary condition 

MK.z--1,~ = NK.z--1/z = 0 

for 1 .< I < 9 and it would appear that the conditions 

A4 K+1/2.Z-1/2 = - MK-112.Z-112 

and 
N K+112.Z-112 = -NK-IIZ.Z-112 

would give satisfactory images in this case as in the slip-boundary case. Pragmati- 
cally this is not true, apparently because the viscous boundary layer associated 
with the no-slip boundary condition is not adequately represented. 

An improved estimate for the images is obtained from Eq. (111-l) 

Z-l,2 + gH e ), Z-l,2 = ’ . 

so that now the tangential component of momentum, N, at the image point will 
involve the viscosity coefficient. 

The no-slip (eastern) boundary conditions are thus 

A4 K+1/2.Z-112 = -"K--112.Z-112 

and 
N K+1/2,Z-l/2 = NK-mz-I/Z - 4Kd,, gdxzD @K.Z - hK.Z--l) 

The functional values so constructed at image points permit the diffusive 
flux to be evaluated at all boundaries and it is seen that the diffusion of tangential 
momentum along slip boundaries is zero. The normal advective flux along all 
boundaries is set to zero, in accordance with the no-transport boundary condition. 

Boundary conditions on the surface height anomaly h reflect the no (normal) 
transport conditions and are imposed so that volume is conserved. Along the 
northern boundary, 

and along the eastern boundary 



FREE-SURFACE, BAROTROPIC, WIND DRIVEN OCEAN CIRCULATIONS 149 

That is, the tangential flux of h along the northern (slip) boundary is M while the 
tangential flux along the eastern (no-slip) boundary is N. Thus, for example, in 
the north-east corner we have 

These relations are easily derived if the terms M4/ax + aN/@ in Eq. (H-9) are 
recognized as the divergence of a flux. The differential equation is then integrated 
over the appropriate area (dotted box in Fig. 2A) and Green’s theorem permits 
the transformation of the divergence expression into line integrals over the surface 
of the dotted box. Division by the area of the zone completes the derivation. 

Along southern and western boundaries the boundary conditions are similar to 
those just described for northern and eastern boundaries, respectively. 

A calculation cycle proceeds as follows assuming we have hn, Mn-1/2, Nn-l12 
for all spatial points. Equations (IV-5), (IV-6), and (IV-7) are solved giving 
Mn+1/2 and Nn+llz. During this part of the computation the image points are set 
up as needed using h” and the intermediate (starred) values of M and N. Finally 
hn+l is computed by Eq. (IV-8) (with appropriate modifications in boundary points) 
at all spatial points. 

V. STABILITY ANALYSIS 

In this section, a stability analysis of the difference equations from Section IV is 
undertaken. The equations are linearized and arranged so that matrix notation may 
be employed. For nonboundary points, the (complex) third-order characteristic 
polynomial for the eigenvalues of the amplification matrix is derived and the eigen- 
values are determined numerically. 

We define the finite difference operators 

(A&z = Kkf1.Z - %+l.Z, 

Wk.Z = wc+1,z - 2%l + h-l.Z, 

(C4k.Z = %.z+1 - WC&1, 

(Wk,Z = %z+1 - 2wcl + wc.z-1. 

In terms of A, B, C, and D we define 

and 
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where I is the identity operator, 01 = udt/dx, y = vdt/dy, fl = K At/Ax2, 
8 = K At/Ay2. 

We define P, Q, S, and T by 

(Ph)k--l,2,t--1/2 = 2Ax J&. (hk.Z + h&z-1 - LLZ - hz-LZ-117 

(Qh1/2.1-112 - 2Ay - Ei?. (4t.z + h,-,,z - hl;.z--l - h--l.z-A 

HA? 
(S&,z = 2dx (&c+1.z+1 + 4c+1.2 - %2+1 - ~k.l), 

and 
HAt 

(TU)k,Z = 2dy (&+1.2+1 + %2+1 - wc+1.2 - 4.z). 

In terms of these operators and the constant F = fdt, a calculation cycle for the 
linearized equations is given by the matrix equation 

where 

and 
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If we assume that the spatial behavior of these functions can be represented by 
complex exponentials and use linearity to suppress summations, we have 

uk,l = E,.(f) &Pdz+l*m, 

and 
V k.1 = CP&) tz 

i(kPAs+ZrlAr) 
7 

hksl = h,(t) &(kpAz+lqA?d 

and the operators then become 

A = 2i sin&, 

B = 2(cospdx - 1) 

C = 2i sin qLly, 

D = 2(cos qAy - ;), 

P=$& + ,-iwW)( 1 - &PAS), 

Q = $ (1 + E-ipAz)(l - &QAv), 

S = _ g (1 + ,Wu)(l - &PA=), 

T = - g (1 + ,@A”)(1 _ ,w~)+ 

and 

In general, the eigenvalues 5 of the amplification matrix A are complex. Since 
the flows under consideration here are physically stable, a necessary condition for 
numerical stability is &j* < 1. 

To simplify somewhat the determination of & we assume p Ax = q dy = 6, 
01 = y, p = 6, and AX = dy. It follows then that RI = R, = R, P = Q, and 
S = T and the characteristic equation reduces to 

(1 + F)$ - (W+ 2R2)t2 + {R4 + R2[2 + QT(l + R)]}f - R4 = 0, (V-l) 

where 
W = TQ[l + F + R(l’- F)] + 1 + F2. 

Since this is a cubic with complex, rather complicated coefficients, a closed form 
solution will presumably not be of much help. We choose rather to compute the 
roots of the characteristic equation based on fixed values of the parameters K, u, 

Ax, gH, and jI We increase dt in discrete steps from a small value (for which 
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gg* < 1) until the magnitude of one of the eigenvalues just exceeds unity for 
O,($b<T. This value of dt minus the increment is then taken as the maximum 
allowable time increment for the given set of parameters. Values of dt determined 
in this manner are given in Figs. 3 for gH = 5.08 x 104 km2 h-2. In Figs. 3A and 
3B, dx = 170 km while in Figs. 3C and 3D dx = 85 km the latter being necessary 
since the momentum points are separated from the boundary by only 85 km. 
Each figure is plotted for a specific value of K and each curve is parameterized by a 

AX=170Km _ 

AX=170Km 

U (Km/HOUR) U (Km/HOUR) 

AX=85Km 

0.0 ’ ’ ’ ’ ’ ’ 
012345 012345 

U (Km/HOUR) U (Km/HOUR) 

FIG. 3. (A) and (B) Plots of maximum allowable time step (dt) versus advective velocity as 
determined numerically through a linear stability analysis. Each curve is parameterized by the 
latitude via the Coriolis parameter J The left curve is for zero viscosity and Ax = 170 km; the 
right curve is for K = 36 km*/h and Ax = 170 km. (C) and (D) Similar to curves in (A) and (B) 
except that here Ax = 85 km rather than 170 km. 
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specific value off It is seen that an increase in bothfand K leads to a relaxation of 
the maximum allowable dt. Forfthis is understandable since the implicit formula- 
tion of the Coriolis acceleration introduces some amplitude damping [6]. For K 

this behavior is not easily understood from simple ideas. It turns out though that 
when j? - 0.1 in Eq. (V-l), this effect is felt, and a further increase in K does necessi- 
tate a decrease in dt. 

It is found experimentally that the model is unstable for dt = 0.25 h but is 
stable for dt = 0.125 h. In Fig. 3D this dt is found for u - 5 km/h at the 
(minimum) latitude of 20”. It appears then that the gross simplifications that have 
gone into this analysis have permitted us to estimate a stable integration time step 
to within a factor of three. 

VI. RESULTS 

In this section, some calculational results will be presented and superhcially 
discussed. A thorough analysis of the transient phase of the free-surface solution 
has already been given by Gates [2]-the results obtained with this model substan- 
tiate his findings in general. However, the model presented here difTers from Gates’ 
model in at least three ways. A rather insignificant difference is that the basin used 
here is square in opposition to the rectangular shape preferred by Gates. In addition, 
the wind stress coefficient is larger here. The most significant difference though is 
that the results presented here were obtained with a nonlinear eddy viscosity. It 
will be seen that this permits small scale features to develop; at the same time, it 
prevents them from contributing to aliassing errors (see Appendix I). 

From the given constant zonal wind-stress we expect from conservation of 
angular momentum that a large-scale clockwise rotation of the fluid will occur. 
Since the Coriolis parameter is an increasing function of latitude, we also expect a 
westward intensification of the flow [Ill-i.e., we anticipate the formation of a 
“gulf stream” near the western boundary. Superposed on this fundamental mode 
we can expect to find two types of damped waves; vertical-transverse gravity waves 
due to the free-surface and horizontal-tranverse Rossby waves due to the variation 
of the Coriolis parameter with latitude [5]. The gravity waves have a phase velocity, 
m, of 220 km/h and the Rossby waves have a phase velocity of -25 km/h. 
(The trapped Rossby waves featured in this solution have a phase velocity of -4 
km/h and a group velocity of -3 km/h.) Moreover, the Rossby wave phase velocity 
never has an eastward component-to satisfy energy conservation requirements at 
a rigid wall, however, the group velocity may have an eastward component [12]. 

The transient aspects of the solution may be inferred from Figs. 4A and 4B; 
these are plots of the kinetic and potential energies for the nonlinear and the linear 
viscosity cases, respectively. For the nonlinear case, there is a spiriTup time of 
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FIG. 4. (A) Total kinetic and potential energies energies as a function of time for the nonlinear 
viscosity case. The solid curve gives ) ss (Mu + No) dx dy (these values range between 5 and 
13 x 106 km6 h-3. The broken curves gives 4 ss g/P dr dy and these values range between 0 and 
3 x 106 km5 h-*. (B) Total kinetic and potential energies as a function of time for the case of 
a linear viscosity. The solid curve gives 4 JJ (Mu + No) dr dy (these values range between 6.5 
and 8.8 x 106 km& h-3. The broken curve gives 4 J’s g/P dx dy and these values range between 
0.5 and 2.5 x 106 km5 h-‘. 
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600 h, approximately twice that of the linear case. After the spin-up time, the 
kinetic energy in the two cases oscillates with a period of -340 h, but it is an 
initially damped oscillation in the linear case. (Times of 300 and 600 h may be 
identified with the Rossby wave reflected from the western boundary-this reflec- 
tion creates alternate cells of southward and northward currents, and the first two 
northward cells east of the “gulf stream” appear at times of approximately 300 
and 600 h as will be seen in Figs 8 and Il.) The natural period for the (I,]) mode 
in this basin is 346 h. 

Details of the transient solution (with nonlinear viscosity) are seen by comparing 
contour maps of the dependent variables h, M, and Nat different times (see Figs. 5 
through 19). These contour maps are computer produced (subject to linear inter- 
polation between mesh points) plots of calculated data. The data have been sub- 
jected neither to additional smoothing (other than that in the basic finite difference 
equations) not to artistic enhancement. Solid lines represent positive or zero values 
of the function being plotted and broken lines represent negative values. The 
contour intervals for h and M are 30 cm and 0.025 km2 h-l, respectively. The 
occurrence of the “gulf stream” means that to resolve data in the eastern part of 
the basin, plots of N must be separated into two parts, N and N2 . Plots of N cover 
the entire basin and have a contour interval of 0.08 km2 h-l. Plots of N, omit the 
first two western mesh points and have a contour interval of 0.015 km2 h-l. The 
propagation of Rossby waves is seen most readily in plots of N, and only a few 
plots of h and M are presented. 

The initial condition for this example is taken to be a state of rest .with h = M = 
N = 0. 

Figures 5 through 12 are contour plots of N2 at four day intervals extending from 
day 1 through day 29. The structure and wavelength of the evolving Rossby wave 
pattern is evident in these plots. The northeastern tilt of these cells is a nonlinear 
effect emphasized by the choice of a large wind stress coefficient. If KD is reduced by 
a factor of 3, to correspond with the nominal physical value [8], the tilt disappears 
and the cells are almost vertical. This is probably related to Veronis’ solution; he 
was able to move the gulf-stream from the western boundary to the northern 
boundary by substantially increasing the Rossby number [13]. 

Figure 13 is a plot of the complete north-south velocity field N at day 29. 
It exhibits the gross structure of the Rossby wave pattern as well as the western 
boundary current implied by the plot of N, . 

Figures 14 through 19 show the east-west velocity field and the surface height 
distribution at days 5, 17, and 29. It is seen from these figures that the flow is for 
the most part geostrophically balanced. 

Figures 20,21, and 22 are contour plots of N, M, and h at day 29 for the case of 
linear viscosity. A comparison of Figs. 13 and 20 (Nat day 29) shows that the same 
pattern appears in both solutions but that the nonlinear solution is more intense. 
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The most striking difference between the two solutions is found in a comparison 
of the M fields at day 29 (Figs. 16 and 21). Over most of the basin the solutions are 
qualitatively the same, but the gradients of M are greater for the nonlinear case than 
the linear. In addition, a small anticyclonic gyre appears in the north-west corner 
of the nonlinear solution-it never appears in the linear solution. This gyre material- 
izes at day 25, inter&es to day 32 then slowly decays until it disappears at day 69. 

A comparison of the surface height fields (Figs. 19 and 22) at day 29 emphasizes 
the above mentioned differences between the two cases. 

The anticyclonic gyre appears in Bryan’s rigid-lid, time-averaged solutions [I] 
when the Reynolds number becomes large enough. This indicates that it is not the 
nonlinear eddy viscosity itself that causes the gyre to develop here; rather the 
nonlinear formulation permits a lower (on the average) eddy viscosity coefficient 
and this introduces less small-scale viscous damping into the solution 
(see Appendix I). Since the value of the linear eddy viscosity coefficient necessary 
for computational stability is proportional to some power of the mesh increment 
[14], a refinement of the mesh (and corresponding decrease in the eddy viscosity 
coefficient) should allow the gyre to develop in the linear (viscosity) case. 

SUMMARY 

We have considered a homogeneous wind-driven flow in a basin on a beta-plane 
as an initial value problem. A numerical algorithm using forward time differences 
and Marchuk’s time-splitting technique has been proposed for solving this problem. 
A linear stability analysis of the system of finite difference equations has been carried 
out; it results in an estimate for the permissible time step that is large by a factor of 
three. 

Two numerical solutions have been found for integration times to 29 days. The 
first solution is obtained with a standard linear eddy viscosity and it is quite similar 
to the solution found by Gates. The second solution is obtained with a nonlinear 
eddy viscosity based on a dimensional argument from two-dimensional turbulence 
theory. This second solution differs from the first in that the interior flows are more 
intense and in that the western boundary current is modified by the addition of a 
transient anticyclonic gyre in the north-west comer of the basin. 

APPENDIX. A NONLINEAR EDDY VISCDSIW 

The need for nonlinear dissipative mechanisms in numerical hydrodynamic 
calculations has previously been cited by Smagorinsky [15] and Leith [14] who 
based their arguments on three and two dimensional theories of turbulence. In a 
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two-dimensional calculation such as that presented here the vorticity enters the 
system in large scales and cascades (via the nonlinear advection term) outward to 
smaller scales. It eventually reaches scales comparable to the mesh size and in this 
region contributes to a numerical aliassing error that cannot be removed by decreas- 
ing zlt [16]. The only way to eliminate this error is to remove vorticity from small 
scales-in a configuration-space calculation such as that reported on here, this is 
usually accomplished by including viscous terms (an eddy viscosity) in the equa- 
tions of motion. Unfortunately, linear eddy viscosities are not very selective, and 
they damp large scales as well as small scales. This may be seen by referring to 
Fig. 23 in which the amplitude damping due to truncation errors and to viscous 
effects are presented for a simple scalar system involving only advection and 
diffusion, viz., 

I I I I I I 111-n 

o*“oMo . . . . . 
kAx/x 

0.0 .l .2 .3 .4 .5 .6 .7 .6 .9 1.0 

kAx/r 

FIG. 23. The eigenvalue of the finite difference operator A after 2000 and 1000 time steps 
(see appendix). The parameters are: a = uAt/Ax and p = KAt/Ax’. 

Applying the difference equations used here to this equation, one arrives at the 
recursion relation 

U?” = 3 Au n i 9 

where (1 is a finite difference operator. Assuming u to be an eigenvector of (1, 
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results in 

where 

u”+l = &k)Iq, j 

t(k) = 1 - (19 + 2/9(1 - cos k&c) - iar sin &lx 

is the eigenvalue of A and where we have used the notation of Section V. 
Numbers characterising the calculations presented here are: cx = 0.002 and 

fl = 0.0001. Using these values (also p/2, 2p, and #? = 0) we have constructed 
Fig. 23 and show there the magnitude of s(k) vs kAx/n after 1000 and 2000 
calculation cycles. It is seen that the linear viscosity does not completely remove the 
smallest scales of motion and that it also strongly damps the larger scales. (Some- 
what arbitrarily, the distinction between small and large is taken to be kAx = 42.) 

We have thus indicated that: some mechanism is needed to remove vorticity 
from small scales; that linear eddy viscosities are the usual choice; and, that they 
are inadequate. This inadequacy is apparently alleviated to a great extent by the use 
of nonlinear eddy viscosities in which the magnitude of the viscous coefficient 
depends on local flow conditions. Although it is clearly impossible to demonstrate 
this by a linear analysis, it is possible to observe the effects of these nonlinear eddy 
viscosities on solutions and to infer conclusions from these observations. For 
example, it is obvious in the solutions presented here that the nonlinear dissipation 
has introduced less damping into large scales and has permitted small scales to 
evolve while at the same time it has prevented computational instability from 
developing. 

The eddy viscosity used here is one postulated by Leith [14]; it was used in a 
previous ocean circulation calculation [6]. Dimensional arguments based on the 
cascade of vorticity in two dimensions lead to the form 

K = L?-L~ 1 VW I, 

where Or is a dimensionless coefficient, L is the mesh spacing and o is the relative 
vorticity. It has been found that computational stability is a sharp function of CL 
The solution presented here was obtained for & = 0.05, however, for E = 0.075 
the same problem went unstable after about 1500 cycles. 
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